DATA SHEET ## samson #### T 3007 EN ### Series 42 Self-operated Regulators · Type 42-20 and Type 42-25 Differential Pressure Regulators With Type 2420/Type 2425 Actuator (opening) and balanced Type 2422 Valve #### **Application** Differential pressure regulator for extended heating systems and industrial applications. Differential pressure set points Δp from **0.05 to 10 bar** · Valves **DN 15 to 250** ¹⁾ · Pressure rating **PN 16 to 40** · Suitable for liquids and vapors ²⁾ from **5 to 350** °C as well as for air and non-flammable gases up to **80** °C The valve opens when the differential pressure rises. The regulators control the differential pressure according to the adjusted set point. #### Special features - Type 42-25: Set point adjustable in wide range - Type 42-20: Fixed set point - Low-noise, medium-controlled proportional regulator requiring little maintenance - Suitable for circuit water, water/glycol mixtures, steam and air as well as other liquids, gases and vapors, provided these do not affect the characteristics of the operating diaphragm - Valve body optionally available in cast iron, spheroidal graphite iron, cast steel, cast stainless steel or forged steel - Single-seated valve with a plug balanced by a stainless steel bellows or a diaphragm (DN 65 to 250) #### **Versions** **Differential pressure regulators** for installation in a bypass pipe or short-circuit pipe (see Fig. 5) · Flanged connections - Type 42-20 (Fig. 2)· Type 2422 Valve · Balanced by a bellows DN 15 to 100 · Balanced by a diaphragm DN 65 to 100 · Type 2420 Actuator (opening) with fixed set point, adjusted to Δp = 0.2, 0.3, 0.4 or 0.5 bar - Type 42-25 (Fig. 1) · Type 2422 Valve · Balanced by a bellows DN 15 to 250 · Balanced by a diaphragm DN 65 to 250 · Type 2425 Actuator (opening) with set point adjustable within the range between 0.05 to 10 bar #### Accessories Required accessories, such as compression-type fittings, needle valves, compensation chambers and control lines, are listed in Data Sheet > T 3095. Fig. 1: Type 42-25 Differential Pressure Regulator (adjustable set point) Fig. 2: Type 42-20 Differential Pressure Regulator (fixed set point) #### **Special versions** - ANSI and JIS versions on request - Versions free of non-ferrous metal on request - Actuator with two diaphragms - Version for temperatures above 220 °C - Version for deionized water - Version for mineral oils which do not affect the characteristics of the FKM diaphragm; other oils on request - Version for small flow rates · Valve with micro-trim with K_{VS} 0.001 to 0.04 or K_{VS} 0.1, 0.4 and 1 without pressure balancing - Type 2422 Valve · DN 15 to 50 without pressure balancina - Special set point 8 to 16 bar for valves ≤ DN 100 on request ¹⁾ Valves larger than DN 250 on request ²⁾ Version balanced by a bellows only #### Principle of operation (Fig. 3) The medium flows through the valve in the direction indicated by the arrow. The position of the plug (3) determines the differential pressure over the cross-sectional area released between the plug and seat (2). The Type 2422 Valve is balanced. The forces acting on the valve plug created by the upstream and downstream pressures are balanced by a balancing bellows (5) or balancing diaphragm (5.1). Regulators balanced by a bellows or a diaphragm only differ in the pressure balancing principle applied. Valves balanced by a diaphragm have a balancing diaphragm (5.1) instead of the balancing bellows (5). The downstream pressure p_2 acts on the bottom of the diaphragm and the upstream pressure p_1 on the top of the diaphragm. As a result, the forces created by the upstream and downstream pressures acting on the plug are balanced out. The differential pressure to be controlled is transferred to the operating diaphragm (13) where it is transformed into a positioning force. This force is used to move the plug (3) according to the force of the set point springs (16). The valve begins to open as soon as the differential pressure exceeds the set point. The set point of **Type 42-25** can be adjusted at the set point nut (SW 27, 17). In **Type 42-20**, the set point springs (16) in the actuator determines the set point. Control lines, which must be mounted on site, transfer the high pressure (+) and low pressure (-) in both regulator versions. #### Type 42-25 Differential Pressure Regulator with two diaphragms SAMSON offers a special version of Type 42-24 with an actuator with two diaphragms (see Fig. 4). The actuator with two diaphragms provides increased functional reliability. An actuator with two diaphragms is always required when an FKM diaphragm is to be used. It is especially suitable for applications with thin oils (e.g. heat transfer oil). The two diaphragms separate both diaphragm chambers connected to the high-pressure and low-pressure connections. They generate a positioning force from the differential pressure. A mechanical diaphragm rupture indicator (22) is located between the two diaphragms, which responds at approx. 1.5 bar. In the event of a diaphragm rupture, the pressure in the space between the two operating diaphragm starts to increase. This causes the pin in the diaphragm rupture indicator to be pushed outwards and a red ring appears, indicating the diaphragm rupture. The intact operating diaphragm takes on the control task of the ruptured diaphragm. A pressure switch can be optionally mounted to the actuator to trigger an alarm. We recommend replacing both diaphragms after a diaphragm rupture is indicated. #### Installing the valve and mounting the actuator Valve, actuator and control lines (accessories) are delivered unattached. A coupling nut is used to attach the actuator to the valve. Preferably mount the actuator after the valve is installed. The following points must be observed: - Install the valve in horizontal pipelines. - The direction of flow must match the direction indicated by the arrow on the body. - Install a strainer (e.g. SAMSON Type 2 NI) upstream of the valve. Fig. 4: Actuator with two diaphragms for Type 42-25 (special version) #### Permissible mounting positions - Actuator suspended: standard installation, balanced by a bellows or diaphragm, all versions. Steam control only for version with balanced by a bellows. - Actuator sideways: versions balanced by a bellows with fixed plug guide or all versions balanced by a diaphragm - Actuator upright (actuator on top of the valve): all versions balanced by a diaphragm, versions balanced by a bellows DN 15 to 80 and at the same time max. 80 $^{\circ}$ C Refer to **EB 3007** for more details. #### **Application** Table 1: Technical data | Туре | | | 42 | -25 | | 42-20 | | | | | | |-------------------------------------|--|---|--|---------------------|---------------------|---------------------------------------|---------------------|--|--|--|--| | Valve size | | | DN 15 | to 250 | DN 15 to 100 | | | | | | | | Pressure rating | | | PN 16, 25, 40 | | | | | | | | | | Max. permissible
temperature | Valve | | See pressure-temperature diagram in ▶ T 3000 | | | | | | | | | | | Actuator 1) | With compensation chamber: steam and liquids up to 220 °C ²⁾ Without compensation chamber: liquids up to 150 °C, air and gases up to 80 °C | | | | | | | | | | | Set point ranges | | 0.05 to 0.25 bar · 0.1 to 0.6 bar · 0.2 to 1 bar · 0.5 to 1.5 bar · 1 to 2.5 bar · 2 to 5 bar · 4.5 to 10 bar | | | | 0.2 bar · 0.3 bar · 0.4 bar · 0.5 bar | | | | | | | Actuator area A | | 80 cm ² | 160 cm ² | 320 cm ² | 640 cm ² | 160 cm ² | 320 cm ² | | | | | | | ax. perm. operating pressure for ac-
ator with two diaphragms | | 40 bar | 25 bar | 25 bar | _ | | | | | | | Conformity | | | | | CE | EHE | EHC | | | | | | Leakage class accord
IEC 60534-4 | ing to | ≤0.05 % of K _{VS} coefficient | | | | | | | | | | Max. 350 °C (660 °F) with extension piece **Table 2:** Materials · Material numbers according to DIN EN Table 2.1: Materials for Type 2422 Valve | Type 2422 \ | /alve · Balanced by o | a bellows | | | | | | | | | |----------------|----------------------------|--|---|------------------------|--|--------------------------------|--|--|--|--| | Valve size | | DN 15 to 250 | | | | | | | | | | Pressure rati | ng | PN 16 | PN 25 | PN 16, 25 and 40 | PN 16, 25 and 40 | | | | | | | Valve body | | Cast iron
EN-GJL-250 | Spheroidal
graphite iron
EN-GJS-400-18-LT | Cast steel
1.0619 | Forged stainless
steel
1.4404 1) | Cast stainless steel
1.4408 | | | | | | Valve seat | | Stair | less steel 1.4104 or 1. | 4006 | 1.4 | 404 | | | | | | nl . | Up to DN 100 ²⁾ | | | Stainless steel 1.4404 | | | | | | | | Plug | DN 125 to 250 | 1. | 4404, plug with PTFE s | eal | 1.4404, with | PTFE soft seal | | | | | | Plug stem | | | | 1.4301 | | | | | | | | Metal bellow | /S | | 1. | 4571 · DN 125: 1.44 | 04 | | | | | | | Bottom section | on | | P265GH | 1.4571 | | | | | | | | Body gasket | | Graphite on metal core | | | | | | | | | | Type 2422 \ | /alve · Balanced by | a diaphragm | | | | | | | | | | Valve size | | | | DN 65 to 100 | | | | | | | | Pressure rati | ng | PN 16 PN 25 | | | | | | | | | | Valve body | | Cast iron EN-GJL-250 Spheroidal graphite iron EN-GJS-400-18-LT | | | | | | | | | | Valve seat | | 1.4408 | | | | | | | | | | Plug | | CW617N | | | | | | | | | | Diaphragm | cases | 1.0619 | | | | | | | | | | Pressure bal | ancing | Diaphragm plate 1.4301 · EPDM balancing diaphragm, max. 150 °C or NBR diaphragm, max. 80 °C | | | | | | | | | | Valve size | | DN 125 to 250 | | | | | | | | | | Pressure rati | ng | PN 16 | PN 16 and 25 | PN 16, 25 and 40 | _ | PN 16, 25 and 40 | | | | | | Valve body | | Cast iron
EN-GJL-250 | Spheroidal graph-
ite iron
EN-GJS-400-18-LT | Cast steel 1.0619 | _ | Cast stainless steel
1.4408 | | | | | | Valve seat | | | | CC499K 3) | | | | | | | | Plug | | CC499 | K 3) · With EPDM soft s | eal, max. 150 °C or w | ith PTFE soft seal, max | . 150 °C | | | | | | Pressure bal | ancing | Diaphragm plate EN-JS1030 · EPDM balancing diaphragm, max. 150 °C or NBR diaphragm, max. 80 °C | | | | | | | | | | | E 40 LEO | | | | | <u> </u> | | | | | Steam version only with valves balanced by a bellows DN 15, 25, 40 and 50 only Optionally with soft seal with standard K_{VS} coefficients Special version 1.4409 Table 2.2: Materials for Type 2420/Type 2425 Actuator | Type 2420/Type 2425 Actuator | | | | | | |------------------------------|--|---------------------------------------|--|--|--| | Valve body | Cast iron, spheroidal graphite iron, cast steel 1.0619 | Forged stainless steel,
cast steel | | | | | Diaphragm cases | 1.0332 | 1.4301 | | | | | Diaphragm | EPDM 1) with fabric reinforceme | ent | | | | | Guide bushing | DU bushing | PTFE | | | | | Seals | EPDM/PTFE 1) | | | | | ¹⁾ Special version, e.g. for mineral oils: FKM using an actuator with two diaphragms **Table 3:** K_{VS} coefficients, x_{FZ} values and max. permissible differential pressures Δp Terms for control valve sizing according to IEC 60534, Parts 2-1 and 2-2: $F_L = 0.95$, $X_T = 0.75$ | Type 2422 Valve · Unbala | Type 2422 Valve · Unbalanced | | | | | | | | | | | | |--|------------------------------|---------------------|------------------|---------------|----|----|--|--|--|--|--|--| | Valve size DN | 15 | 20 | 25 | 32 | 40 | 50 | | | | | | | | Valve travel | | | 10 | mm | | | | | | | | | | K _{VS} coefficient | 4.0 | 4.0 · 6.3 | 4.0 · 6.3 · 8.0 | 16 | 20 | 32 | | | | | | | | Max. permissible differential pressure Δp | 14 bar | | | 6 bar 4 bc | | | | | | | | | | x _{FZ} value | 0.65 | 0.6 | 0. | 0.55 0.45 0.4 | | | | | | | | | | Reduced K _{VS} coefficient | 0.1 · 0.4 · 1.0 | · 2.5 or 0.001 to 0 | .04 (micro trim) | - | | | | | | | | | | Max. permissible
differential pressure Δp | | 25 bar | | - | | | | | | | | | | x _{FZ} value | | 0.65 | | - | | | | | | | | | | Type 2422 Valve · Ba | Type 2422 Valve · Balanced by a bellows | | | | | | | | | | | | | |---|---|--------|----|-------|------|----|----|---------------|------|---------------|--------|--------|-----| | Valve size DN | 15 | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | 250 | | Valve travel | | | 10 | 10 mm | | | | 16 mm | | | 22 | mm | | | Standard K _{VS}
coefficient | 4 | 6.3 | 8 | 16 | 20 | 32 | 50 | 80 | 125 | 190 | 280 | 420 | 500 | | Max. perm. differention pressure Δp | ıl | | 25 | bar | | | 20 | bar | 16 | 16 bar 12 bar | | 10 bar | | | Reduced K _{VS} coefficien | nt | - 4 | | 6.3 | 8 | 16 | 32 | | 80 | 80 | 125 | 28 | 30 | | Max. perm. differention pressure Δp | ıl | 25 bar | | | | | | 20 bar 16 bar | | | 16 bar | 12 | bar | | x _{FZ} value | 0.65 | 0.6 | 0. | 55 | 0.45 | 0 | .4 | | 0.35 | | | 0 | .3 | | Type 2422 Valve · Balan | Type 2422 Valve · Balanced by a diaphragm | | | | | | | | | | | | | |---|---|-------------|-----|-----|-----|--------|-----|--|--|--|--|--|--| | Valve size DN | 65 | 80 | 100 | 125 | 150 | 200 | 250 | | | | | | | | Valve travel | | 15 mm 35 mm | | | | | | | | | | | | | K _{VS} coefficient | 50 | 80 | 125 | 250 | 380 | 650 | 800 | | | | | | | | Max. permissible differential pressure Δp | | 10 bar | | 12 | bar | 10 bar | | | | | | | | | x _{FZ} value | 0.4 | | 0. | 35 | | 0.3 | | | | | | | | #### Dimensional drawings for Type 42-25 and Type 42-20 balanced by a bellows · Dimensions and weights (see Table 4) Type 42-25 · Type 2422 Valve balanced by a bellows with Type 2425 Actuator Type 42-20 · Type 2422 Valve balanced by a bellows with Type 2420 Actuator Type 42-24 · Type 2422 Valve balanced by a bellows with Type 2424 Actuator and metal cover Extension piece Type 42-25 with two diaphragms: Add approx. 55 mm to the total height H. #### Ordering text Type 42-20 and Type 42-25 Differential Pressure Regulator DN ..., valve balanced by a bellows/diaphragm PN ..., body material ... Set point or set point range ... bar Optionally, accessories ... Optionally, special version Table 4: Dimensions and weights for Type 42-20 and Type 42-25 · Balanced by a bellows Dimensions in mm · Weights in kg | Valve size | DN | 15 | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | 250 | |---------------------|------------------------------|--|------|----------|------------------------|--------------------|----------------------|---------------------|-----------------------|-----------------------|--|-----------------|-----------|-----------------| | Length L | | 130 | 150 | 160 | 180 | 200 | 230 | 290 | 310 | 350 | 400 | 480 | 600 | 730 | | Height H1 | | | | 2 | 25 | | , | 300 355 460 590 730 | | | | 30 | | | | Height H2 | Forged steel | 53 | - | 70 | - | 92 | 98 | | | | - | | | | | neight nz | Other materials | | 44 | | | 72 | | 1 | 00 | 120 | 145 | 175 | 235 | 260 | | Type 42-25 D | Oifferential Pressure | Regulator | | | | | | | | | | | | | | Set points | Type 2425 Actuate | or | | | | | | | | | | | | | | 0.05 | Height H 4) 5) 6) | | | 6 | 25 | | | 7 | 00 | 755 | 990 | 1120 | 12 | 60 | | 0.05 to
0.25 bar | Actuator | | ØD = | = 285 mm | · A = 320 | cm ^{2 1)} | | ØD = 283 | 5 mm · A = | = 640 cm ² | ØD | = 390 mm | · A = 640 | cm ² | | | Weight 3) in kg | 21 | 21.5 | 22.5 | 29 | 29.5 | 32 | 46 | 51 | 65 | 135 | 185 | 425 | 485 | | | Height H 4) 5) 6) | | | 6 | 25 | | | 6 | 85 | 740 | 990 | 1120 | 12 | 260 | | 0.1 to
0.6 bar | Actuator | | ØD = | = 225 mm | · A = 160 | cm ^{2 2)} | | | 0 = 285 m
= 320 cm | | ØD | = 390 mm | · A = 640 | cm ² | | | Weight 3) in kg | 16 | 16.5 | 17.5 | 24 | 24.5 | 27 | 46 | 51 | 65 | 135 | 185 | 425 | 485 | | | Height H 4) 5) 6) | 625 | | | | | | 7 | 00 | 755 | 990 | 1120 | 12 | 260 | | 0.2 to 1 bar | Actuator | \emptyset D = 225 mm · A = 160 cm ^{2 2} | | | | | | 2) | | ØD = 390 mm · A = 640 | | cm ² | | | | | Weight 3) in kg | 16 | 16.5 | 17.5 | 24 | 24.5 | 27 | 42 | 47 | 61 | 135 | 185 | 425 | 485 | | 0.5. | Height H ^{4) 5) 6)} | | | 6 | 25 | | | 7 | 00 | 755 | 940 | 1070 | 12 | 210 | | 0.5 to
1.5 bar | Actuator | \emptyset D = 225 mm · A = 160 cm ^{2 2} | | | | | | 2) | | | \emptyset D = 285 mm · A = 320 cm ² | | | cm ² | | | Weight 3) in kg | 16 | 16.5 | 17.5 | 24 | 24.5 | 27 | 42 | 47 | 61 | 125 | 175 | 415 | 475 | | | Height H 4) 5) 6) | | | 6 | 25 | | | 7 | 00 | 755 | 940 | 1070 | 12 | 10 | | 1 to 2.5 bar | Actuator | | | | | | ØD = 22 | 25 mm · A : | = 160 cm ² | | | | | | | | Weight 3) in kg | 16 | 16.5 | 17.5 | 24 | 24.5 | 27 | 42 | 47 | 61 | 125 | 175 | 415 | 475 | | | Height H 4) 5) 6) | | | 6 | 05 | | | 6 | 80 | 735 | 940 | 1070 | 12 | 10 | | 2 to 5 bar | Actuator | | | | ØD = 17 | 70 mm · A | $= 80 \text{ cm}^2$ | | | | ØD | = 225 mm | · A = 160 | Cm ² | | | Weight 3) in kg | 16 | 16.5 | 17.5 | 24 | 24.5 | 27 | 42 | 47 | 61 | 102 | 170 | 410 | 470 | | 4.5 to | Height H 4) 5) 6) | | | 6 | 85 | | | 7 | 60 | 815 | | | | | | 4.5 to
10 bar | Actuator | | | | $ \varnothing D = 17 $ | 70 mm · A | = 80 cm ² | | | | | On re | equest | | | | Weight 3) in kg | 16 | 16.5 | 17.5 | 24 | 24.5 | 27 | 42 | 47 | 61 | | | | | | Type 42-20 D | Pifferential Pressure | Regulator | | | | | | | | | | | | | | Set points | Type 2420 Actuato | or | | | | | | | | | | | | | | 0.2 bar | Height H 4) 5) 6) | | | | 90 | | | 465 520 | | | | | | | | 0.3 bar
0.4 bar | Actuator | | ØD = | = 225 mm | · A = 160 | cm ^{2 2)} | | \emptyset D = 283 | 5 mm · A = | = 320 cm ² | | | - | | | 0.5 bar | Weight 3) in kg | 11.5 | 12 | 13 | 19.5 | 20 | 22.5 | 38 | 43 | 57 | | | | | Optionally with 640 cm² actuator Optionally with 320 cm² actuator ³⁾ The weight applies to the version with the material specifications EN-GJL-250. Add +10 % for all other materials. Actuators with metal cover H +135 mm The height H increases to 200 mm at the maximum, depending on the extension piece used. Minimum clearance required to remove the actuator: +100 mm #### Dimensional drawing of Type 42-25 and Type 42-20 balanced by a diaphragm · #### Dimensions and weights (see Table 5) # H111) Type 2422 Valve balanced by a diaphragm with Type 2425/2420 Actuator (Type 2425 in diagram) Type 42-20 only #### Dimensional drawing of actuator with two diaphragms Type 42-25 with two diaphragms (special version). Add approx. 55 mm to the overall height H. #### Table 5: Dimensions and weights for Type 42-20 and Type 42-25 · Balanced by a diaphragm Dimensions in mm · Weights in kg | Valve size DN | | 65 | 80 | 100 | 125 | 150 | 200 250 | | | | |-------------------------------|---------------------------|------|------------------|----------------------|--|---|---------------------------------|-----|--|--| | Length L | | 290 | 310 | 350 | 400 | 480 | 600 730 | | | | | Height H2 | | 9 | 98 | 118 | 145 | 175 | 260 | | | | | Type 42-20 Diffe | erential Pressure Regul | ator | | | | | | | | | | Set points | Type 2420 Actuator | | | | | | | | | | | 0.2 bar | Height H1 | 3: | 55 | 375 | | | _ | | | | | 0.3 bar
0.4 bar | Actuator | ØD = | 285 mm · A = 32 | 20 cm ² | | | _ | | | | | 0.5 bar | Weight, approx. kg | 38 | 43 | 51 | | • | _ | | | | | Type 42-25 Diffe | erential Pressure Regul | ator | | | | | | | | | | Set points | Type 2425 Actuator | | | | | | | | | | | | Height H ^{3) 4)} | 59 | 90 | 610 | 815 | 840 | 9 | 10 | | | | 0.05 to
0.25 bar | Actuator | | | ØD = | 390 mm · A = 64 | 10 cm ² | | | | | | 0.20 bai | Weight [kg] | 42 | 42 47 | | 75 | 95 | 250 | 270 | | | | | Height H ^{3) 4)} | 59 | 90 | 610 | 815 | 840 | 910 | | | | | 0.1 to 0.6 bar | Actuator | ØD = | 285 mm · A = 320 | O cm ^{2 1)} | | ØD = 390 mm | \cdot A = 640 cm ² | | | | | | Weight [kg] | 42 | 47 | 55 | 75 | 95 | 250 | 270 | | | | | Height H ^{3) 4)} | 5 | 90 | 610 | 765 | 790 | 860 | | | | | 0.2 to 1 bar | Actuator | ØD = | 225 mm · A = 160 | O cm ^{2 2)} | $\emptyset D = 285 \text{ mm} \cdot A = 320 \text{ cm}^{21}$ | | | | | | | | Weight [kg] | 42 | 47 | 55 | 75 | 95 | 250 | 270 | | | | | Height H ^{3) 4)} | 59 | 90 | 610 | 765 | 790 | 860 | | | | | 0.5 to 1.5 bar | Actuator | ØD = | 225 mm · A = 160 | O cm ^{2 2)} | | $\emptyset D = 285 \text{ mm} \cdot A = 320 \text{ cm}^{2 \text{ 1}}$ | | | | | | | Weight [kg] | 42 | 47 | 55 | 75 | 95 | 250 | 270 | | | | | Height H ^{3) 4)} | 59 | 90 | 610 | 765 | 790 | 80 | 50 | | | | 1 to 2.5 bar | Actuator | | | ØD = | $225 \text{ mm} \cdot \text{A} = 160 \text{ cm}^{22}$ | | | | | | | | Weight [kg] | 42 | 47 | 55 | 75 | 95 | 250 | 270 | | | | | Height H ^{3) 4)} | 59 | 90 | 610 | 765 | 790 | 80 | 50 | | | | Set point range
2 to 5 bar | Actuator | | | ØD = | 225 mm · A = 16 | 00 cm ² | | | | | | 0 0 .001 | Weight [kg] | 42 | 47 | 55 | 75 | 95 | 250 | 270 | | | Optionally with 640 cm² actuator Optionally with 320 cm² actuator Actuators with metal cover H +135 mm Minimum clearance required to remove the actuator: +100 mm