

VETEC Drehkegelventile & Antriebe Hauptkatalog

VETEC: Zuverlässig · Flexibel · Innovativ

Das sind wir Mit VETEC gewinnen Sie einen Partner, der stets das Beste für Ihr Unternehmen erreichen will. dem Kundenkommunikation auf Augenhöhe wichtig ist und der Wert auf faire Geschäftsbeziehungen legt.

Tradition & Perfektion

Tradition und Perfektion für langlebige und sichere Stellventile

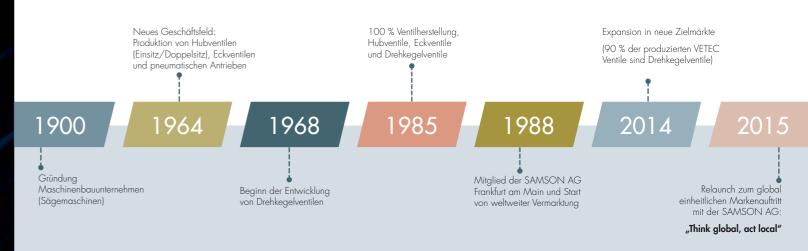
Das Wissen der VETEC Ventiltechnik basiert auf unserer Geschichte und unserer langjährigen Erfahrung. Dieses solide Wissen gepaart mit einem weltweit agierenden Kommunikations- und Vertriebsnetz macht uns zu einem kompetenten Partner

VETEC steht für deutsche Ingenieursarbeit und der individuellen Fertigung passgenauer, auf Ihr Anliegen gefertigter Regelarmaturen. Daraus resultieren hochwertige Ventile, die höchsten Ansprüchen genügen.

Beste Qualität

Es sind unsere Mitarbeiter, die die Qualität und den hohen Standard der Marke begründet haben und jeden Tag aufs Neue Ihr Bestes für Sie geben. So wird jedes unserer Stellventile individuell auf Ihre Prozessanforderungen hin gefertigt und befindet sich viele Jahre **in verlässlichem Einsatz.**

VETEC Drehkegelventile zeichnen sich durch hohe Durch-flusskapazitäten und eine exzellente Regelgüte bei enorm hoher Auflösung aus. Typischerweise sind die Kvs-/Cv-Werte zwei- bis dreifach höher als bei vergleichbaren Produkten. Das Stellverhältnis bis zu 200:1 überragt sowohl das klassische Regelventil als auch das vergleichbarer Produkte.


Konzentration auf unsere Kunden und auf die Ansprüche des Prozesses

Oft erweisen sich die scheinbar einfachen Aspekte in der Umsetzung als die schwierigsten. Für VETEC stehen die Bedürfnisse der Kunden und die Anforderungen an den Prozess im Vordergrund. Innovationen sind niemals Selbstzweck, sondern sind das Ergebnis aus Gesprächen und der Zusammenarbeit mit unseren Kunden.

VETEC Produkte sollen robuste Werkzeuge für den sicheren Umgang mit den verschiedensten Prozessen sein.

Nachhaltigkeit

Als modernes Industrieunternehmen steht VETEC für dauerhafte Werte. Unser Anspruch und unser technisches Know-how machen unsere Regelarmaturen zum sicheren und langlebigen Bauteil von größter Zuverlässigkeit und Langlebigkeit. Auch bei extremen Umwelteinflüssen wie starken Temperaturschwankungen, Erschütterungen oder im Offshore-Einsatz werden sie höchsten Erwartungen gerecht. Denn jede unserer Regelarmatur ist das Ergebnis jahrzehntelanger Erfahrung, kompromisslos hoher Qualitätsstandards sowie kontinuierlicher Weiterentwicklung.

Standard Antriebe

Designmerkmale (optional)

- Packung nach TA-Luft/ISO 15848 ein äquivalentes Dichtungssystem zum Faltenbalg
- Totraumfrei
- Umfangreiche Abdichtung der Lagerstellen
- Doppelstopfbuchse
- Hoch- und Tieftemperaturverlängerungen
- Heizmantel
- Keramik- und Hartmetallschutzhülsen
- Spülanschlüsse

VETEC Typ 82.7
Drehkegelventil,

Kurzbauweise (Wafer Type)

VETEC Typ 82.7-01

Konstruktive Erweiterung

VETEC Typ 72.3

Drehkegelventil,


Langbauweise

Version 2017:

 Bauelemente zur Reduzierung von Schallemissionen und Kavitation

Eigenschaften

- Besonders hohe Durchflusskapazität, freier Durchgang
- Robuste und kompakte Konstruktion
- Regelbereich bis zu 200:1
- Ausblassichere Welle
- Maximale Verschleißfestigkeit und Langlebigkeit
- Exzellentes Regelverhalten durch Doppelexzentrizität
- Kundenspezifisch konfiguriert
- Ideal für die Regelung von Gas-, Dampf, Flüssigkeits- und Feststoffströmen
- Einsetzbar für korrosive, aggressive, anhaftende hochviskose und verschmutzte Medien

Design Merkmale

- Robust und kompakt
- Variable Federanzahl
- Optimierte Federbereiche

Doppelkolben-Schwenkantrieb

einfach- oder doppeltwirkend

- NAMUR Schnittstelle für Typ R, AT, BR 31a
- Modularer Aufbau:
 Optional mit Handgetriebe, Handrad, mechanischen Endanschlägen oder Zubehör
- Optional mit Schnellschlussfunktion

Eigenschaften

- Präzise Regelung besonders bei Membranantrieben
- Hohe Drehmomente (Stellkraft)
- Hohe Stellgeschwindigkeit
- Einsetzbar bei Temperaturen von -40... +80°C
- Für explosionsgefährdete Bereiche geeignet

Doppelkolben-Schwenkantrieb

einfach- oder doppeltwirkend

Mögliche Anwendungsbereiche

Durchfluss-Charakteristik

Die Variantenvielfalt der VETEC Drehkegelventile macht das Produkt universell und für viele Anwendungen einsetzbar. **Drehkegelventile** Typ 82.7, 82.7-01, 72.3, 73.7, 73.3 sind als **Regel- oder Auf/Zu-Ventile** in weiten Bereichen der Prozessindustrie einsetzbar.

■ Chemie und Petrochemie

- Acrylsäure
- Ethylenoxid
- Butadien
- Fluor
- Bitumen
- Kunststoffschmelze
- Feststoffhaltige Medien
- Ammoniak

Industriegase

- Gasförmiger Sauerstoff
- Phosgen
- ▶ Chlor
- Tiefkalte (kryogene) Gase

Wasser und Abwasser

- Wasseraufbereitung
- Entsalzung
- ▶ Kühlsysteme für Prozesse
- Dampf

■ Metallurgie und Bergbau

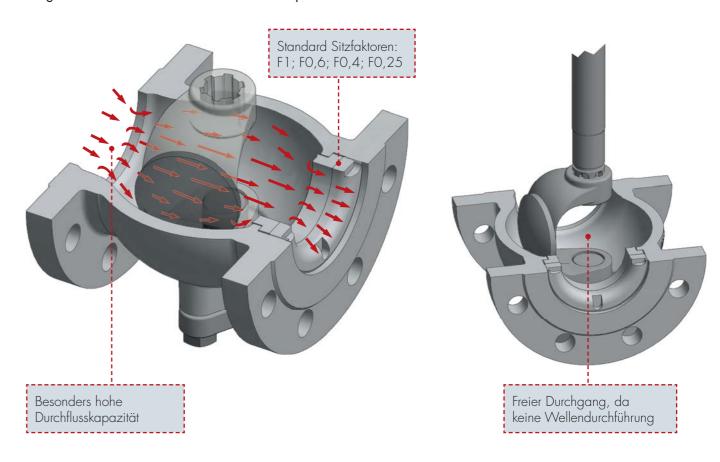
 Erzaufbereitung (abrasive und korrosive Schlämme)

■ Öl und Gas (Mid- und Downstream)

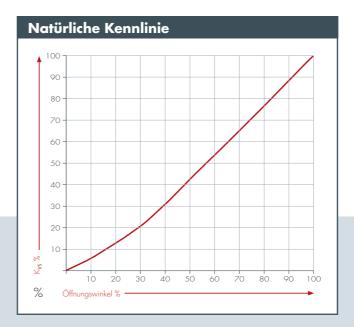
- Sauergas
- LNG
- Verteilungs- und Zuführungsprozesse
- Feststoffhaltige Medien
- Crude Oil / Naphtha /HCO

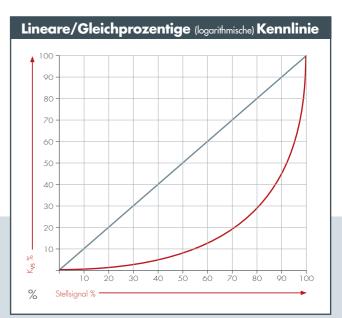
■ Spezielle Anwendungsbereiche

- Stellventile mit Sicherheitsfunktion
 - DVGW Zulassung
 - Fire-Safe Zulassung


■ Gebäudeautomation

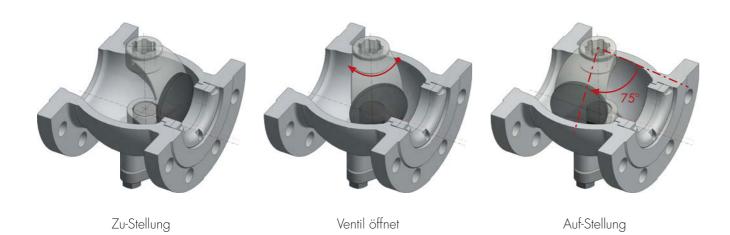
- Fernwärme
- Fernkälte


Zellstoff- und Papierindustrie


Faserige Rohstoffströme

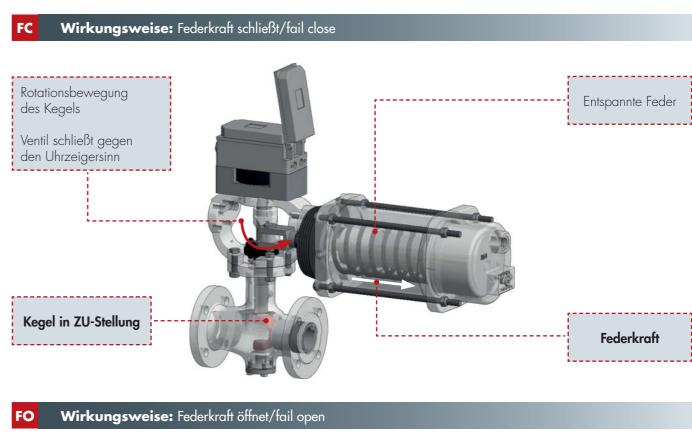
Das Durchflussmedium kann das Ventil ohne Umlenkung durchströmen. VETEC verzichtet auf eine Wellendurchführung im Kegel und erreicht dadurch einen **freien Durchgang mit sehr großen K_{VS}-Werten**. Durch den Einsatz reduzierter Sitzgarnituren kann das Ventil auf den Prozess optimiert werden.

Die konstruktionsbedingte natürliche Kennlinie wird mit Hilfe eines Stellungsreglers in eine lineare oder gleichprozentige (logarithmische) Kennlinie umgeformt.

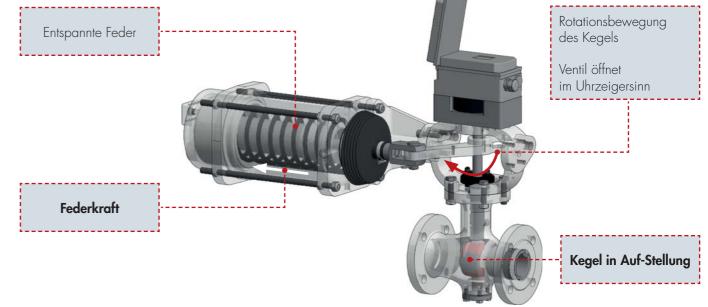

 δ

Sicherheitsstellungen

Bei der geringsten Drehbewegung hebt der Kegel aus dem Sitz ab. Es findet kein Übergang von statischer zu dynamischer Reibung zwischen Sitz und Kegel statt. Dank seiner robusten, doppelten Lagerführung ist das Ventil vibrationsunempfindlich.


VETEC Drehkegelventile können bidirektional durchströmt werden:

- ▶ FTO = Flow To Open (Medium öffnet)
- ▶ FTC = Flow To Close (Medium schließt) Drehachse Kegel (Rotationskörper) Sitzgarnitur (Sitz-/Gewindering) FTO Lagerzapfen Exzentrizität



Mit einfachwirkenden Schwenkantrieben Typ R, AT, M, BR 31a und anderen Antrieben hat das Stellventil zwei unterschiedliche Sicherheitsstellungen, die bei Ausfall der Hilfsenergie wirksam werden:

- FC = Fail Close (Federkraft schließt): bei Hilfsenergieausfall wird das Ventil geschlossen
- FO = Fail Open (Federkraft öffnet): bei Hilfsenergieausfall wird das Ventil geöffnet

Technische Daten Ventile

1 Typ 82.7 & 82.7-01 Version 2017 Kurzbauweise (Wafer Type)

	DIN	ANSI		
Nennweite	DN 25 bis 300	NPS 1 bis 12		
Nenndruck	PN 10 bis 40	CL 150, 300		
Einbaulänge DIN EN 558, Tabelle 2	Reihe 36			

2 Typ 72.3 Langbauweise

	DIN	ANSI		
Nennweite	DN 25 bis 600	NPS 1 bis 24		
Nenndruck	PN 10 bis 40	CL 150, 300		
Einbaulänge DIN EN 558, Tabelle 2	DN 25 bis 250 Reihe 1 DN 300 bis 600 Reihe 15	NPS 1 bis 10, CL 150 Reihe 37 NPS 1 bis 10, CL 300, Reihe 38 NPS 12 - 24, Reihe 15		

3 Typ 73.7 Kurzbauweise Hochdruck

	DIN	ANSI
Nennweite	DN 25 bis 600	NPS 1 bis 24
Nenndruck	PN 63 bis 160	CL 600, 900
Einbaulänge DIN EN 558, Tabelle 2	DN 25, Reihe 2 DN 40 bis 600 Reihe 15	NPS 1, CL 600 Reihe 39 NPS 1, CL 900, Reihe 54 NPS 1½ bis 24, Reihe 15

4 Typ 73.3 Langbauweise Hochdruck

	DIN	ANSI*
Nennweite	DN 25 bis 250	_
Nenndruck	PN 63 bis 160	_
Einbaulänge DIN EN 558, Tabelle 2	DN 25 bis 250, Reihe 2	

* Auf Anfra

Technische Daten KONZERN-Antriebe

1 AIR TORQUE Version A

Funktion	Pneumatischer Schwenkantrieb
Тур	Doppelkolben (gegen den Uhrzeigersinn schließend)
Einfachwirkend	SC, SO
Doppeltwirkend	DL
Baugrößen	60 bis 10.000

AIR TORQUE

Pfeiffer Chemie Armaturenhau GmhH

2 PFEIFFER Typ BR 31a

Funktion	Pneumatischer Schwenkantrieb		
Тур	Doppelkolben (gegen den Uhrzeigersinn schließend)		
Einfachwirkend	SRP		
Doppeltwirkend	DAP		
Baugrößen	60 bis 10.000		

Technische Daten **VETEC-**Antriebe

1 Typ R

Funktion	Pneumatischer einfachwirkender Schwenkantrieb
Тур	Rollmembran
Standard	R110, R150, R200, R250
Mit verstärkten Federn	R110v, R150v, R200v, R250v, R250vv

2 Typ MD

Funktion	Pneumatischer einfachwirkender Schwenkantrieb		
Тур	Membran		
Standard	MD450, MD700		
Mit verstärkten Federn	MD450v, MD700v		

3 Typ MZ

Funktion	Pneumatischer einfachwirkender Schwenkantrieb
Тур	Membran
Standard	MZ450, MZ700
Mit verstärkten Federn	MZ450v, MZ700v

Version	DIN	ANSI			
Flanschausführung ¹	DIN EN 1092-1 ASME B16.5				
Ventilsitz	Metallisch- oder weichdichtend				
Öffnungswinkel	75 °				
Schließrichtung	Gegen den Uhrzeigersinn				
Durchflussrichtung	Bidirektional: Medium schließt (FTC)/Medium öffnet (FTO)				
Sicherheitsstellung	Feder schließt (FC)/Feder öffnet (FO)				
Stellverhältnis	Bis zu 200:1				
Kennlinie	Natürliche (lineare oder gleichprozentige mittels Stellungsregler)				
Leckrate	DIN EN 60534-1	ANSI/FCI 70-2			
Leckrate	Metallisch dichtend: Klasse IV, Weichdichtend: Klasse VI				
Temperaturbereich ²	-196 bis +500 °C/-321 bis +932°F				
Antrieb	Pneumatisch, elektrisch, hydraulisch, Handgetriebe				
Ausführung gemäß	RL 2014/68/EU, AD2000 Merkblätter, RL 2006/42/EG				

¹ Andere Ausführungen auf Anfrage

Werkstoffe

VETEC fertigt Drehkegelventile in fast allen metallischen Werkstoffen. Neben Standards bei Stahlguss- und Edelstahlgusssorten bieten wir Stähle und Edelstähle für Tief- und Hochtemperaturanwendungen sowie Sonderwerkstoffe an.

DIN-EN (WN)	ASME äquivalent	Beschreibung	Temperaturbereich [°C]	
1.0619	A216 WCC (-29 bis +400°C)	Stahlguss	-10 bis +400	
1.4408	A351 CF8M	Korrosionsfester Stahlguss	-196 bis +500	

Sonderwerkstoffe

- Duplex
- Superduplex
- Monel®
- Hastelloy®

- Titan
- Zirkonium
- Bronzelegierungen
- Weitere auf Anfrage

Ventilty			82.7-01		72.3		73.7		73.3		
Nenndruck		8410 pis 10	0,030	8410 pis No	C150 PE	C1.300 Rfs	K763/65/60	(1,600 kg	(1,000 kg	R163165160	7,000
DN	NPS	Baulängen									
25	1	102	102	160	184	197	230	210	254	230	_
40	11/2	114	114	200	222	235	240	240	240	260	_
50	2	124	124	230	254	267	250	250	250	300	_
80	3	165	165	310	298	317	280	280	280	380	_
100	4	194	194	350	352	368	300	300	300	430	_
150	6	229	229	480	451	473	350	350	350	550	_
200	8	243	243	600	543	568	400	400	400	650	_
250	10	297	297	730	673	708	450	450	450	775	_
300	12	338	338	500	500	500	500	500	500	_	_
400	16	_	_	600	600	600	600	600	600	_	_
500	20	_	_	700	700	700	700	700	700	_	_
600	24	_	_	800	800	800	800	800	800	-	_

Auf Anfrage RTJ Flanschausführung, Baulängenänderung

Ventilty			82.7-01		72.3			73.7			3.3
Nennd	ruck	8470 pie 170	0,030	8470 pie MO	C1508t	C1.300 kg	14 63 bis 160	Crp00 by	C1000 8g	1263 bis 160	7,000
DN	NPS	Reihen									
25	1	36	36	1	37	38	2	39	54	2	_
40	11/2	36	36	1	37	38	15	15	15	2	_
50	2	36	36	1	37	38	15	15	15	2	_
80	3	36	36	1	37	38	15	15	15	2	_
100	4	36	36	1	37	38	15	15	15	2	_
150	6	36	36	1	37	38	15	15	15	2	_
200	8	36	36	1	37	38	15	15	15	2	_
250	10	36	36	1	37	38	15	15	15	2	_
300	12	36	36	15	15	15	15	15	15	_	_
400	16	_	_	15	15	15	15	15	15	_	_
500	20	_	_	15	15	15	15	15	15	_	_
600	24	_	_	15	15	15	15	15	15	_	_

² Konstruktiv unterschiedliche Ausführungen

Metallischer Sitz — Medium schließt (FTC)

DN [mm]		25	40	50	80	100	150	200	250	300
NPS [inch]		1	11/2	2	3	4	6	8	10	12
Sitzfaktoren										
100 % (F1)	K _{VS}	16	36	70	210	340	660	810	1300	2100
100 % (F1)	Sitz Ø [mm]	18	26	36	60	76	105	135	170	210
60 % (F0,6)	K _{VS}	12	22	43	135	200	320	410	820	900
00 % (FU,0)	Sitz Ø [mm]	16	21,5	29,5	50	60	86	106	146	163
40 % (EO 4)	K _{VS}	10	16	31	95	120	185	250	540	570
40 % (F0,4)	Sitz Ø [mm]	14	18,5	25,5	44	53	73	88	126	133
25 % /EO 25\	K _{VS}	4	12	19	56	90	125	160	320	410
25 % (F0,25)	Sitz Ø [mm]	10	16	21	37	45	62	73	102	116

Weitere Sitzfaktoren auf Anfrage

2 Metallischer Sitz — Medium öffnet (FTO)

				•	•					
DN [mm]		25	40	50	80	100	150	200	250	300
NPS [inch]		1	11/2	2	3	4	6	8	10	12
Sitzfaktoren										
100 % /F1\	K _{VS}	16	36	70	220	360	720	1100	1950	2700
100 % (F1)	Sitz Ø [mm]	18	26	36	60	76	105	135	170	210
60 % (FO,6)	K _{VS}	12	22	43	145	210	430	630	1230	1500
00 / ₀ (FU,0)	Sitz Ø [mm]	16	21,5	29,5	50	60	86	106	146	163
40 % /EO 4\	K _{VS}	10	16	31	105	150	275	390	850	900
40 % (F0,4)	Sitz Ø [mm]	14	18,5	25,5	44	53	73	88	126	133
25 % (F0.25)	K _{VS}	4	12	19	70	100	185	245	500	640
	Sitz Ø [mm]	10	16	21	37	45	62	73	102	116

Weitere Sitzfaktoren auf Anfrage.

3 Weichsitz - Medium schließt (FTC)

DN [mm]		25	40	50	80	100	150	200	250	300	
NPS [inch]		1	11/2	2	3	4	6	8	10	12	
Sitzfaktoren											
100 % (F1)	K _{VS}	12	36	68	180	290	535	730	1220	2000	
100 % (F1)	Sitz Ø [mm]	16	26	35	54	70	98	128	160	210	
60 % (F0,6)	K _{VS}	11	22	43	135	200	320	410	820	900	
00 % (FU,O)	Sitz Ø [mm]	15	21,5	29,5	50	60	86	106	146	163	
40 % /EO 4\	K _{VS}	10	16	31	105	120	185	250	540	570	
40 % (F0,4)	Sitz Ø [mm]	14	18,5	25,5	46	53	73	88	126	133	
25 % (FO.25) =	K _{VS}	4	12	19	56	90	125	160	320	410	
	Sitz Ø [mm]	10	16	21	37	45	62	73	102	116	

Weitere Sitzfaktoren auf Anfrage.

FTC = Flow To Close (Medium schließt) FTO = Flow To Open (Medium öffnet)

Metallischer Sitz — Medium schließt (FTC)

DN [mm]		25	40	50	80	100	150	200	250	300	400	500	600
NPS [inch]		1	11/2	2	3	4	6	8	10	12	16	20	24
Sitzfaktoren													
100 % /E1\	K _{vs}	16	36	70	210	340	660	810	1300	2100	3400	4800	7680
100 % (F1)	Sitz Ø [mm]	18	26	36	60	76	105	135	170	210	290	350	420
40 9/ /F 0 4\	K _{vs}	12	22	43	135	200	320	410	820	900	1800	2700	4030
60 % (F0,6)	Sitz Ø [mm]	16	21,5	29,5	50	60	86	106	146	163	225	271	330
40 9/ /FO 4\	K _{vs}	10	16	31	95	120	185	250	540	570	1120	1600	2530
40 % (F0,4)	Sitz Ø [mm]	14	18,5	25,5	44	53	73	88	126	133	184	221	275
25 % (F0.25) ⊢	K _{vs}	4	12	19	56	90	125	160	320	410	860	870	1410
	Sitz Ø [mm]	10	16	21	37	45	62	73	102	116	160	175	225

Weitere Sitzfaktoren auf Anfrage. Ventil Typ 73.3 nur bis DN 250.

2 Metallischer Sitz — Medium öffnet (FTO)

DN [mm]		25	40	50	80	100	150	200	250	300	400	500	600
NPS [inch]		1	11/2	2	3	4	6	8	10	12	16	20	24
Sitzfaktoren													
100 % /F1\	K _{vs}	16	36	70	220	360	720	1100	1950	2700	4700	6700	9700
100 % (F1)	Sitz Ø [mm]	18	26	36	60	76	105	135	170	210	290	350	420
60 % (FO.6) ⊢	K _{vs}	12	22	43	145	210	430	630	1230	1500	2700	3800	5800
	Sitz Ø [mm]	16	21,5	29,5	50	60	86	106	146	163	225	271	330
40 9/ /FO 4\	K _{vs}	10	16	31	105	150	275	390	850	900	1600	2300	3900
40 % (FO.4) +	Sitz Ø [mm]	14	18,5	25,5	44	53	73	88	126	133	184	221	275
25 % (F0.25) ⊢	K _{vs}	4	12	19	70	100	185	245	500	640	1100	1250	2400
	Sitz Ø [mm]	10	16	21	37	45	62	73	102	116	160	175	225

Weitere Sitzfaktoren auf Anfrage. Ventil Typ 73.3 nur bis DN 250.

3 Weichsitz - Medium schließt (FTC)

Troiding Troiding (F16)													
DN [mm]		25	40	50	80	100	150	200	250	300	400	500	600
NPS [inch]		1	11/2	2	3	4	6	8	10	12	16	20	24
Sitzfaktoren													
100 % (F1)	K _{VS}	12	40	68	180	290	535	730	1220	2000	2700	4800	7680
	Sitz Ø [mm]	18	26	36	60	76	105	135	170	210	290	350	420
I 60 % (F0.6) ⊢	K _{VS}	11	22	43	135	200	320	410	820	900	1800	2700	4030
	Sitz Ø [mm]	16	21,5	29,5	50	60	86	106	146	163	225	271	330
40 % /EO 4\	K _{VS}	10	16	31	105	120	185	250	540	570	1120	1600	2530
40 % (FO.4) ⊢	Sitz Ø [mm]	14	18,5	25,5	44	53	73	88	126	133	184	221	275
25 % (FO.25) K	K _{vs}	4	12	19	56	90	125	160	320	410	860	870	1410
	Sitz Ø [mm]	10	16	21	37	45	62	73	102	116	160	175	225

Weitere Sitzfaktoren auf Anfrage. Ventil Typ 73.3 nur bis DN 250.

FTC = Flow To Close (Medium schließt) FTO = Flow To Open (Medium öffnet)

Hochdruck

Ventile Typ **82.7**, **82.7-01**, **72.3** mit **R**-Antrieb

Differenzdrücke — FC/FTO und FO/FTC

R Antr	امان	Baugrößen								
K AIIII	leb	R110	R110v	R150	R150v	R200	R200v	R250	R250v	R250vv
Feder	pereiche	0,4-1,2	1,16-2,76	0,4-1,2	0,92-2,76	0,4-1,2	1,25-2,65	0,4-1,2	1,3-2,4	1,7-3,3
DN	NPS	Differenzdr	ücke Δp [bar]							
25	1	40								
40	11/2	16	40	40						
50	2	8	40	40	40					
80	3		14	14	38	30	40	40		
100	4		6	6	20	16	40	28		
150	6				8	6	28	10	40	40
200	8				4	3	14	6	25	30
250	10						6	3	12	16
300	12						4		6	8

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

2 Differenzdrücke — FC/FTC und FO/FTO bei Zuluftdruck 4 [barg]

R Antr	:_L	Baugrößen								
K Anir	leb	R110	R110v	R150	R150v	R200	R200v	R250	R250v	R250vv
Feder	pereiche	0,4-1,2	1,16-2,76	0,4-1,2	0,92-2,76	0,4-1,2	1,25-2,65	0,4-1,2	1,3-2,4	1,7-3,3
DN	NPS	Differenzdri	ücke Δp [bar]							
25	1	40	40							
40	11/2	40	40							
50	2	40	30							
80	3		15	40	40					
100	4		6	36	26					
150	6			16	12	36	30	40	30	18
200	8			8	6	18	14	30	24	10
250	10					10	8	16	10	6
300	12							8	6	3

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

Ventile Typ 73.7, 73.3 mit R-Antrieb

Differenzdrücke — FC/FTO und FO/FTC

D. AI-	: . L	Baugrößen								
R Antr	leb	R110	R110v	R150	R150v	R200	R200v	R250	R250v	R250vv
Feder	pereiche	0,4-1,2	1,16-2,76	0,4-1,2	0,92-2,76	0,4-1,2	1,25-2,65	0,4-1,2	1,3-2,4	1,7-3,3
DN	NPS	Differenzdr	ücke ∆p [bar]							
25	1	32	75							
40	11/2	16	75	75	75					
50	2	6	40	36	75					
80	3		12	12	36	30	75	56	75	
100	4		4	5	18	14	50	26	75	55
150	6				8	6	26	10	40	28
200	8				3		12	5	20	14
250	10						5	3	10	8
300	12						4		6	

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

2 Differenzdrücke — FC/FTC und FO/FTO bei Zuluftdruck 4 [barg]

D. AI-	R Antrieb	Baugrößen								
K Anir	leb	R110	R110v	R150	R150v	R200	R200v	R250	R250v	R250vv
Federb	pereiche	0,4-1,2	1,16-2,76	0,4-1,2	0,92-2,76	0,4-1,2	1,25-2,65	0,4-1,2	1,3-2,4	1,7-3,3
DN	NPS	Differenzdr	ücke ∆p [bar]]						
25	1		75							
40	11/2	75	75							
50	2	75	40							
80	3		14	75	40					
100	4		6	60	24	75	55			
150	6				10	55	25	75	40	20
200	8				5	18	14	50	26	10
250	10						8	25	16	6
300	12							12	8	3

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

Maximal zulässige Differenzdrücke (Δp)

Hochdruck

Ventile Typ 82.7, 82.7-01, 72.3 mit Doppelkolben-Antrieb einfachwirkend

Differenzdrücke — FC/FTO und FO/FTC

AT Ani	rieb	Baugr	ößen												
4 Fede	rn	60	100	150	220	300	450	600	900	1200	2000	3000	4000	5000	10000
DN	NPS	Differe	nzdrücke	e Δp [ba	r]										
25	1	10	40												
40	11/2		16	30	40										
50	2		6	12	30	40									
80	3			3	8	12	24	38							
100	4				4	6	12	18	26	40					
150	6						4	8	12	18	30	40			
200	8							4	6	8	16	26	36	40	
250	10									4	8	14	20	24	40
300	12										4	8	12	14	28
400	16												4	6	10
500	20													3	6

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

Differenzdrücke — FC/FTC und FO/FTO bei Zuluftdruck 4 [barg]

AT Antrieb		Baugra	Baugrößen													
4 Fede	4 Federn		100	150	220	300	450	600	900	1200	2000	3000	4000	5000	10000	
DN	NPS	Differe	Differenzdrücke Δp [bar]													
25	1	16	40													
40	11/2		16	37	40											
50	2		7	18	34	40										
80	3			5	11	17	30	40								
100	4				5	8	15	21	27	40						
150	6					3	7	10	13	20	36	40				
200	8						3	5	7	11	19	26	37	40		
250	10								3	6	11	14	21	31	40	
300	12									3	6	9	13	19	32	
400	16												4	6	10	
500	20													3	6	

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

Ventile Typ 73.7, 73.3 mit Doppelkolben-Antrieb einfachwirkend

Differenzdrücke — FC/FTO und FO/FTC

AT Antrieb 4 Federn		Baugr	Baugrößen													
		60	100	150	220	300	450	600	900	1200	2000	3000	4000	5000	10000	
DN	NPS	Differenzdrücke Δp [bar]														
25	1	4	35	64	75											
40	11/2		15	30	60	75										
50	2		6	12	28	40	75									
80	3			3	8	12	24	38	52	75						
100	4				4	6	12	18	25	40	70	75				
150	6						4	8	12	18	30	40	70	75		
200	8							4	6	8	16	25	36	40	75	
250	10									4	8	14	20	24	40	
300	12										4	8	11	15	28	
400	16												4	6	10	
500	20													3	6	

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

Differenzdrücke — FC/FTC und FO/FTO bei Zuluftdruck 4 [barg]

AT Ani	AT Antrieb 4 Federn		Baugrößen													
4 Fede			100	150	220	300	450	600	900	1200	2000	3000	4000	5000	10000	
DN	NPS	Differe	Differenzdrücke Δp [bar]													
25	1	6	30	75												
40	11/2		15	33	65	75										
50	2		6	14	30	42	75									
80	3			4	10	15	28	38	50	75						
100	4				3	6	12	18	25	40	70	75				
150	6						5	8	10	18	32	45	65	75		
200	8							4	6	8	16	25	35	50	75	
250	10									4	8	12	19	26	45	
300	12										5	6	11	15	28	
400	16												4	6	10	
500	20													3	6	

Werte für Standardpackung und TA-Luft Stopfbuchse. Gelten nicht bei Doppelstopfbuchse! Höhere Differenzdrücke auf Anfrage.

Schallmindernde Bauelemente

Stopfbuchse TA-Luft/ISO 15848

Äquivalentes Dichtungssystem zum Faltenbalg.

2 Doppelstopfbuchse TA-Luft/ISO 15848

Zwei unabhängig voneinander abdichtende TA-Luft Packungen. Äquivalentes Dichtungssystem

Für umweltbelastende, toxische Medien

zum Faltenbalg.

Optional mit Testanschluss

3 Lagerstellenabdichtungen

Lagerstellenabdichtungen für spezielle Anwendungen.

Sonderausführung mit O-Ringen an Lagerzapfen und Welle.

4 Heizmantel

Für Medien, die nur oberhalb einer Temperatur flüssig bleiben. Ein Wärmeträger gewährleistet die gewünschte Temperatur.

Temperaturverlängerung Typ IT1

Für niedrige oder hohe Temperaturen.

6 Temperaturverlängerung Typ IT2

Für tiefkalte (kryogene) Gase.

7 Spülanschlüsse

8 Keramik- und Hartmetall-Schutzhülsen

Für abrasive, erosive und aggressive Medien.

VETEC Schallminderungen bieten eine wirksame, betriebssichere und kostengünstige Möglichkeit Schallemission, Kavitation und Erosion zu minimieren. Die Bauelemente sind an die jeweiligen Betriebsbedingungen anpassbar und in beiden Durchfl ussrichtungen wirksam. Bestehende Ventile können mit VETEC-Schallminderungen nachgerüstet

1 SM 1.0 / SM 1.5

Gas- und dampfförmige Medien. Bauelement im Ventilsitz eingebaut. Δp max. 40 bar

2 SM 2.0 / 2.5

Für niedrige Differenzdrücke Gas- und dampfförmige Medien. Δp max. 10 bar

3 SM 2.0 / 2.5

Für hohe Differenzdrücke Gas- und dampfförmige Medien. Δp max. 63 bar

4 SM 3.0 / SM 3.5

SM 8.0 (Rohrbündel)

Flüssige Medien. Δp max. 40 bar

7 SM 4.0 / 4.5

Gas- und dampfförmige Medien. Δp max. 10 bar

8 SM 9.1

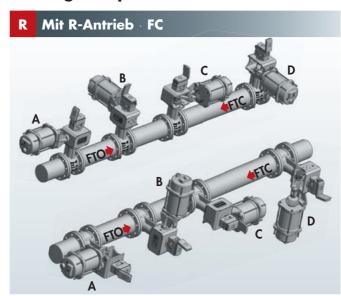
Flüssige Medien. Δp max. 40 bar

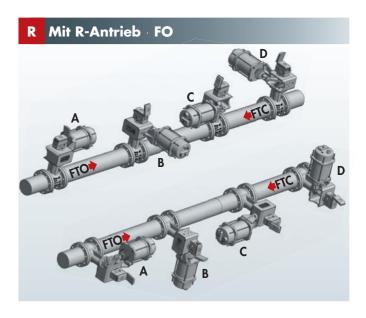
9 SM 9.2

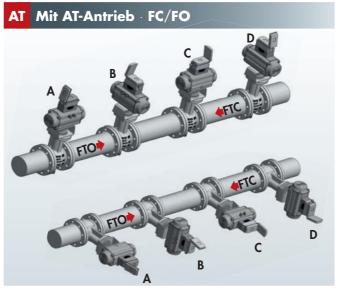
Einbaulagen & Anbauarten

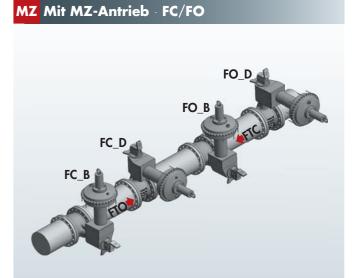
VETEC Drehkegelventile können sowohl mit pneumatischen, elektrischen als auch mit hydraulischen Schwenkantrieben betrieben und mit verschiedenen Peripheriegeräten wie folgt ausgestattet werden: Stellungsregler, Magnetventile, Grenzsignalgeber und andere Anbaugeräte nach DIN EN 60534-6 oder NAMUR-Empfehlung.

Typ 72.3 mit R Antrieb Zubehör: Handrad SAMSON Stellungsregler


Einbaulage Stellventile


- Stellventile mit R-, AT-, BR 31a-Antrieben können in beliebiger Einbaulage betrieben werden.
- Bei Stellventilen mit MD-, MZ-Antrieben empfehlen wir die Einbaulage in eine horizontale Rohrleitung. Weitere Einbaulagen auf Anfrage!


Anbauarten Antriebe


- Antriebe des Typs R, AT, BR 31a, können in den Anbauarten A, B, C oder D am Ventil montiert werden.
- Antriebe des Typs MD oder MZ werden in den Anbauarten B oder D montiert.
- Weitere Anbauarten auf Anfrage!

Montagebeispiele Stellventile

Zulassungen & Herstellererklärungen

Profitieren Sie von langjähriger Erfahrung!

CE

Konformitätserklärung gemäß Anhang IV der RL 2014/68/EU ATEX / RL 2014/34/EU

Ausrüstung für den Einsatz in explosionsgefährdeten Bereichen

TA-Luft / ISO 15484

TA-Luft

Industriearmaturen - Mess-, Prüfund Qualifikationsverfahren für flüchtige Emission SIL (IEC 61508 / IEC 61511)

SIL

Sicherheitsintegritätslevel für die funktionale Sicherheit

EAC

Konformitätsbewertung der Zollunion (Eurasische Konformität) TR CU 010/2011, TR CU 032/2011 EAC Ex

Konformitätsbewertung der Zollunion (Eurasische Konformität) TR CU 012/2011

DVGW / GAR (EU) 2016/426 / EN 161

Typgeprüfte Konstruktion nach DIN EN 16678 mit Sicherheitsfunktion für Gasund Wasserwirtschaft. BAM

BAM

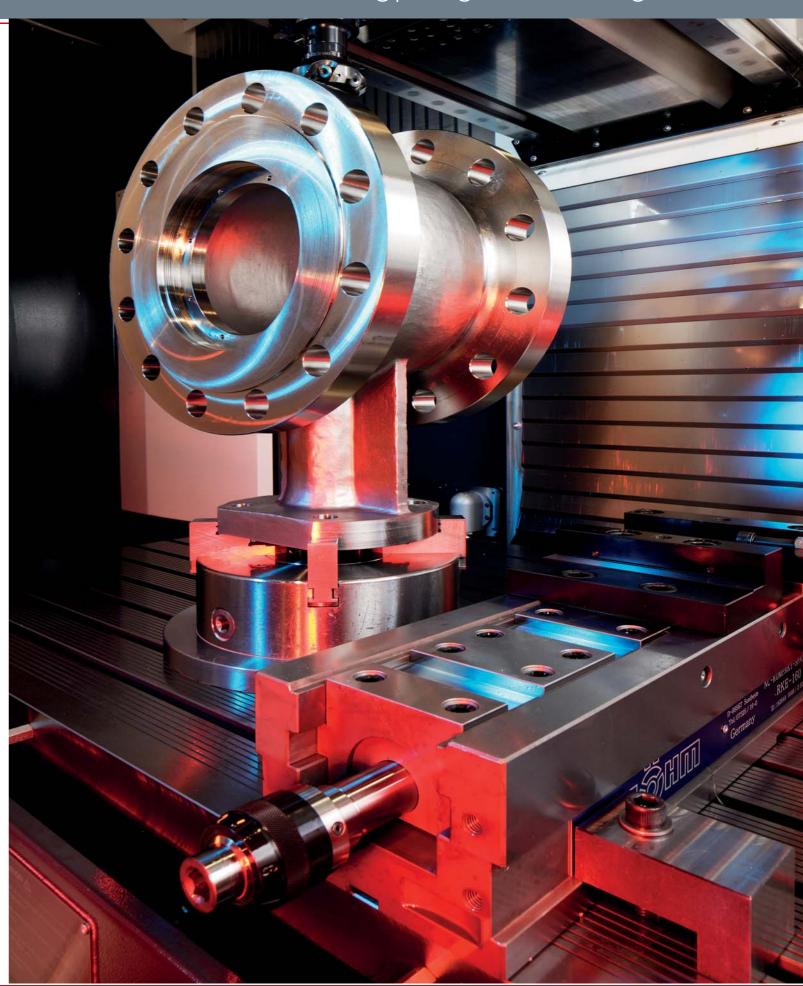
Nichtmetallische Werkstoffe für Sauerstoffanwendungen

DIN EN ISO 10497 / API 607

Fire Safe

Typgeprüfte Konstruktion auf Feuersicherheit.

NACE Standard


NACE International Nach MR01103 / MR0175

FDA / FMPA

FDA/FMPA

Nichtmetallische Werkstoffe für die Lebensmittelindustrie

Production sites

Subsidiaries

VETEC Ventiltechnik GmbH

Siemensstraße 12 · 67346 Speyer

Telefon: +49 6232 6412-0 · Fax: +49 6232 42479

E-Mail: verkauf@vetec.de
Internet: www.vetec.de

SAMSON AKTIENGESELLSCHAFT

Weismüllerstraße 3 · 60314 Frankfurt am Main Telefon: +49 69 4009-0 · Fax: +49 4009-1507

E-Mail: samson@samson.de Internet: www.samson.de